Creation of Ising machines based on an electronic oscillator without locking by external injection

  • 1.

    Lucas, A. Ising formulations of many NP problems. Front. Phys. 2, 1–14 (2014).

    Item

    Google Scholar

  • 2.

    Mallick, A. et al. Using synchronized oscillators to calculate the maximum independent set. Nat. Commmon. 11, 4689 (2020).

    ADS
    CASE
    Item

    Google Scholar

  • 3.

    Bashar, MK et al. Experimental demonstration of a reconfigurable coupled oscillator platform to solve the Max-cut problem. IEEE J. Explor. Solid State Computing. Dev. Tours 6(2), 116–121 (2020).

    ADS

    Google Scholar

  • 4.

    Wang, T. & Roychowdhury, J. OIM: Oscillator-based Ising machines for solving combinatorial optimization problems. In Unconventional Calculus and Natural Calculus (eds. McQuillan, I. & Seki, S.) vol. 11493 232–256 (Springer International Publishing, 2019).

  • 5.

    Chou, J., Bramhavar, S., Ghosh, S. & Herzog, W. Weighted Ising machine based on an analog coupled oscillator. Science. representing 9, 1–10 (2019).

    Google Scholar

  • 6.

    Albertsson, DI et al. Ultrafast Ising machines using torque nano-oscillators. Appl. Phys. Lett. 118(11), 112404 (2021).

    ADS
    Item

    Google Scholar

  • seven.

    Johnson, MW et al. Quantum annealing with manufactured spins. Nature 473(7346), 194-198 (2011).

    ADS
    CASE
    Item

    Google Scholar

  • 8.

    King, AD & McGeoch, CC Algorithm engineering for a quantum annealing platform. arXiv::1410.2628. (2014)

  • 9.

    Smelyanskiy, VN et al. A short-term quantum computing approach for computationally difficult problems in space exploration. arXiv::1204.2821. http://arxiv.org/abs/1204.2821 (2012).

  • ten.

    Goto, H. Bifurcation-Based Adiabatic Quantum Computation with a Network of Nonlinear Oscillators. Science. representing 6, 21686 (2016).

    ADS
    CASE
    Item

    Google Scholar

  • 11.

    Goto, H. Quantum computation based on quantum adiabatic bifurcations of nonlinear parametric Kerr oscillators. J.Phys. Soc. Jpn. 88, 061015 (2019).

    ADS
    Item

    Google Scholar

  • 12.

    Wang, Z., Marandi, A., Takata, K., Byer, RL, and Yamamoto, Y. A network of degenerate optical parametric oscillators for coherent computation. Reader Notes Physical. 911, 219-249 (2016).

    ADS
    Item

    Google Scholar

  • 13.

    Mcmahon, PL et al. A fully programmable 100-spin consistent Ising machine with all-in-all connections. Science 354(6312), 614–617 (2016).

    ADS
    MathSciNet
    CASE
    Item

    Google Scholar

  • 14.

    Haribara, Y., Utsunomiya, S. & Yamamoto, Y. A consistent Ising machine for MAX-CUT problems: performance evaluation against semi-definite programming and simulated annealing. Reader Remarks Phys. 911, 251-262 (2016).

    ADS
    Item

    Google Scholar

  • 15.

    Pierangeli, D., Marcucci, G. & Conti, C. Large-scale photonic Ising machine by spatial light modulation. Phys. Rev. Lett. 122(21), 213902 (2019).

    ADS
    CASE
    Item

    Google Scholar

  • 16.

    Mahboob, I., Okamoto, H. & Yamaguchi, H. An electromechanical Hamiltonian from Ising. Science. Adv. 2(6), e1600236 (2016).

    ADS
    Item

    Google Scholar

  • 17.

    Takemoto, T., Hayashi, M., Yoshimura, C. & Yamaoka, M. 2.6 a scalable 2×30k multi-chip spin annealing processor based on an in-memory processing approach to solve large-scale combinatorial optimization problems ladder. In IEEE Int. Semiconductor circuits Conf. (ISSCC) Dig. Technology. Papers, February 2019, 52–54 (2019).

  • 18.

    Yamamoto, K. et al. 7.3 STATICA: A fully digital 0.25 M 512-spin annealing processor with a near-memory all-spin concurrent update architecture for combinatorial optimization with full spin-spin interactions. In IEEE Int. Semiconductor circuits Conf. (ISSCC) Dig. Technology. Papers, 138-140 (IEEE, 2020).

  • 19.

    Su, Y., Kim, H. & Kim, B. 31.2 CIM-spin: A scalable 0.5–1.2 V annealing processor using in-memory numerical computation spin operators and register-based spins for combinatorial optimization problems. In IEEE Int. Semiconductor circuits Conf. (ISSCC) Dig. Technology. Papers, February 2020, 480–482 (2020).

  • 20.

    Yamaoka, M. et al. A 20k-spin Ising chip for solving combinatorial optimization problems with CMOS annealing. IEEE J. Solid State Circuits 51(1), 303–309 (2016).

    Item

    Google Scholar

  • 21.

    Cai, F. et al. Energy-efficient combinatorial optimization using intrinsic noise in Hopfield memristor neural networks. Nat. Electron 3, 409–418 (2020).

    Item

    Google Scholar

  • 22.

    Torrejon, J. et al. Neuromorphic computing with nanoscale spintronic oscillators. Nature 547, 7664 (2017).

    Item

    Google Scholar

  • 23.

    Lebrun, R. et al. Mutual synchronization of spin-couple nano-oscillators through a long-range and tunable electrical coupling scheme. Nat. Commmon. 8, 15825 (2017).

    ADS
    CASE
    Item

    Google Scholar

  • 24.

    Coulombe, JC, York, MC & Sylvestre, J. Computation with networks of nonlinear mechanical oscillators. PLoS One 12, e0178663 (2017).

    Item

    Google Scholar

  • 25.

    Csaba, G., Papp, A., Porod, W. & Yeniceri, R. Non-Boolean computation based on linear waves and oscillators. In 2015 45th European Semiconductor Device Research Conference, 101–104 (2015).

  • 26.

    Mahboob, I. & Yamaguchi, H. Bit storage and bit flipping operations in an electromechanical oscillator. Nat. Nanotechnology. 3, 275–279 (2008).

    CASE
    Item

    Google Scholar

  • 27.

    Csaba, G., Ytterdal, T. & Porod, W. Neural network based on parametric pumped oscillators. In 2016 IEEE International Conference on Electronics, Circuits and Systems (ICECS), 45–48 (IEEE, Monte Carlo, 2016).

  • 28.

    Roychowdhury, J. Boolean computation using self-sustaining nonlinear oscillators. proc. IEEE 103, 1958-1969 (2015).

    Item

    Google Scholar

  • 29.

    Pufall, MR et al. Physical implementation of coherently coupled oscillator networks. IEEE J. Explor. Solid State Computing. Device circuits. 1, 76–84 (2015).

    ADS
    Item

    Google Scholar

  • 30.

    Csaba, G. & Porod, W. Noise immunity of oscillatory computing devices. IEEE J. Explor. Solid State Computing. Devices Circuits 6(2), 164–169 (2020).

    ADS
    Item

    Google Scholar

  • 31.

    Csaba, G. & Porod, W. Coupled oscillators for computing: a review and perspective. Appl. Phys. Tower. seven(1), 011302 (2020).

    CASE
    Item

    Google Scholar

  • 32.

    Csaba, G., Raychowdhury, A., Datta, S. & Porod, W. Computing with Coupled Oscillators: Theory, Devices and Applications. In 2018 IEEE International Symposium on Circuits and Systems (ISCAS), 1–5 (2018).

  • 33.

    Bashar, MK, Hrdy, R., Mallick, A., Farnoud Hassanzadeh, F. & Shukla, N. Solving the maximum independent set problem using coupled relaxation oscillators. In Device Research Conference 2019 (DRC), 187-188 (2019).

  • 34.

    Vaidya, J., Bashar, MK & Shukla, N. Using noise to increase synchronization between oscillators. Science. representing 11, 4462 (2021).

    ADS
    CASE
    Item

    Google Scholar

  • 35.

    Mallick, A. et al. Coloring of graphs using dynamical systems based on coupled oscillators. IEEE Int. Symp. System circuits ISCAS 2021, 1–5 (2021).

    CASE

    Google Scholar

  • 36.

    Herrmann, CS & Klaus, A. Autapse transforms the neuron into an oscillator. Int. J. Fork. chaos 14(02), 623–633 (2004).

    MathSciNet
    Item

    Google Scholar

  • 37.

    Saada, R., Miller, N., Hurwitz, I. & Susswein, AJ Autaptic excitation causes persistent activity and plateau potential in a neuron of known behavioral function. Running. Biol. 19(6), 479–484 (2009).

    CASE
    Item

    Google Scholar

  • 38.

    Yilmaz, E., Ozer, M., Baysal, V. & Perc, M. Autapse-induced multiple coherence resonance in single neurons and neural networks. Science. representing 6(1), 1–14 (2016).

    Item

    Google Scholar

  • 39.

    Qin, H., Ma, J., Wang, C. & Chu, R. Autapse-induced target wave, spiral wave in a regular neural network. Science. Physics China. Mech. Star. 57(10), 1918-1926 (2014).

    ADS
    Item

    Google Scholar

  • Comments are closed.